8.10. Вправи до розділу 8

Комплексні числа у алгебричній формі

8.1. Обчислити:

a) \((2 + i)(3 - i) + (2 + 3i)(3 + 4i);\)

b) \((2 + i)(3 + 7i) - (1 + 2i)(5 + 3i);\)

c) \((5+i)(7-6i);\)

d) \((1+3i)(8-i);\)

e) \((1+i)^2;\)

f) \((-1/2 + \sqrt{3}/2 i)^2;\)

g) \((-1/2 - \sqrt{3}/2 i)^3;\)

h) \((1+3i)^3 (3 - i)^3;\)

\(\frac{(5+i)(7-6i)}{3+4};\)

\(\frac{(1+3i)(8-i)}{(2+i)^2};\)

\(\frac{(1+i)^2}{(1-i)^2};\)

\(\frac{(3-i)(1-4i)}{2-i};\)

\(\frac{(3+i)^3}{(3-i)^3};\)

i) \((-1/2 + \sqrt{3}/2 i)^2;\)

\(\frac{(3 + i)^3}{(3 - i)^3};\)

8.2. Обчислити визначники:

a) \(\begin{vmatrix} a & c + di \\ c - di & b \end{vmatrix};\)

b) \(\begin{vmatrix} a + bi & b \\ 2a & a - bi \end{vmatrix};\)

c) \(\begin{vmatrix} \cos \varphi + i \sin \varphi & 1 \\ \cos \varphi - i \sin \varphi & 1 \end{vmatrix};\)

d) \(\begin{vmatrix} a + bi & c + di \\ -c + di & a - bi \end{vmatrix};\)

8.3. Довести, що при дійсних \(a, b, c, d\) корені рівняння \(\begin{vmatrix} a - x & c + di \\ c - di & b - x \end{vmatrix} = 0\) будуть дійсними.

8.4. Обчислити визначники 3-го порядку:

a) \(\begin{vmatrix} 1 & 0 & 1 + i \\ 0 & 1 & i \\ 1 - i & -i & 1 \end{vmatrix};\)

b) \(\begin{vmatrix} x & a + bi & c + di \\ a - bi & y & e + fi \\ c - di & e - fi & z \end{vmatrix};\)

c) \(\begin{vmatrix} a_1 + b_1i & a_1i - b_1 & c_1 \\ a_2 + b_2i & a_2i - b_2 & c_2 \\ a_3 + b_3i & a_3i - b_3 & c_3 \end{vmatrix};\)

8.5. Обчислити \(i^{77}, i^{98}, i^{-57}, i^n,\) де \(n\) — ціле число.

8.6. Перевірити тотожність \(x^4 + 4 = (x - 1 - i)(x - 1 + i)(x + 1 + i)(x + 1 - i).\)

8.7. Довести рівність \((1 + i)^{8n} = 2^{4n},\) де \(n \in \mathbb{Z}.\)

8.8. Обчислити \((1+i)^n,\) де \(n\) — ціле додатне число.

8.9. Розв’язати систему рівнянь:

a) \(\begin{cases} (1 + i)z_1 + (1 - i)z_2 = 1 + i, \\ (1 - i)z_1 + (1 + i)z_2 = 1 + 3i; \end{cases}\)

b) \(\begin{cases} iz_1 + (1 + i)z_2 = 2 + 2i, \\ 2iz_1 + (3 + 2i)z_2 = 5 + 3i; \end{cases}\)

c) \(\begin{cases} (1 - i)z_1 - 3iz_2 = -i, \\ 2z_1 - (3 + 3i)z_2 = 3 - i; \end{cases}\)

\(\begin{cases} 2z_1 - (2 + i)z_2 = -i, \\ (4 - 2i)z_1 - 5z_2 = -1 - 2i; \end{cases}\)

d) \(\begin{cases} x + iy - 2z = 10, \\ x - y + 2iz = 20, \\ ix + 3iy - (1 + i)z = 30. \end{cases}\)

8.10. Знайти дійсні числа \(x\) та \(y,\) що задовольняють рівняння:
а) \((2 + i)x + (1 + 2i)y = 1 - 4i;\)
б) \((3 + 2i)x + (1 + 3i)y = 4 - 9i.\)

8.11. Довести, що \(\overline{\overline{z}} = z\) для довільного комплексного числа \(z \in \mathbb{C}\).

8.12. Довести, що
\[
\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}, \quad \overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}
\]

для довільних комплексних чисел \(z_1, z_2\).

8.13. Довести, що відображення \(\varphi : \mathbb{C} \to \mathbb{C}\), де \(\varphi(z) = \overline{z}\) для довільного \(z \in \mathbb{C}\), є автоморфізмом поля \(\mathbb{C}\).

8.14. Довести, що:
а) комплексне число \(z\) є дійсним тоді і тільки тоді, коли \(\overline{z} = z\);
б) комплексне число \(z\) є чисто уявним тоді і тільки тоді, коли \(\overline{z} = -z\).

8.15. Довести, що:
а) добуток двох комплексних чисел є дійсним числом тоді і тільки тоді, коли одне з них відрізняється від спряженого до другого дійсним множником;
б) сума і добуток двох комплексних чисел є дійсним тоді і тільки тоді, коли дані числа або спряжені, або обидва дійсні.

8.16. Знайти всі комплексні числа, які спряжені:
а) своєму квадрату;
б) своєму кубу.

8.17. Довести: якщо в результаті скінченії кількості операцій (додавання, віднімання, множення, ділення) над комплексними числами \(z_1, z_2, \ldots, z_n\) отримується число \(z\), то в результаті цих же операцій над спряженими числами \(\overline{z}_1, \overline{z}_2, \ldots, \overline{z}_n\) отримується число \(\overline{z}\).

8.18. Довести, що визначник
\[
\begin{vmatrix}
z_1 & \overline{z}_1 & a \\
\overline{z}_2 & z_2 & b \\
z_3 & \overline{z}_3 & c
\end{vmatrix}
\]
dе \(z_1, z_2, z_3 \) — комплексні і \(a, b, c\) — дійсні числа, є чисто уявним числом.

8.19. Обчислити:
а) \(\sqrt{2i}; \)
б) \(\sqrt{-8i}; \)
в) \(\sqrt{3 - 4i}; \)
г) \(\sqrt{-15 + 8i}; \)

д) \(\sqrt{-3 - 4i}; \)
е) \(\sqrt{-11 + 60i}; \)
ж) \(\sqrt{-8 + 6i}; \)
з) \(\sqrt{8 + 6i}; \)
и) \(\sqrt{2 - 3i}; \)

і) \(\sqrt{4 + i} + \sqrt{4 - i}; \)
ї) \(\sqrt{1 - i\sqrt{3}}; \)
й) \(\sqrt{-1}; \)
к) \(\sqrt{2 - i\sqrt{12}}. \)

8.20. Нехай \(\sqrt{a + bi} = \pm(a + \beta i).\) Чому дорівнює \(\sqrt{-a - bi}?\)

8.21. Розв'язати рівняння:
а) \(z^2 = i; \)
б) \(z^2 = 3 - 4i; \)
в) \(z^2 = 5 - 12i; \)

г) \(z^2 - (1 + i)z + 6 + 3i = 0; \)
д) \(z^2 + (2i - 7)z + 13 - i = 0. \)

8.22. Розв'язати рівняння і їхні ліві частини розкласти на множники з дійсними коефіцієнтами:
а) \(x^4 + 6x^3 + 9x^2 + 100 = 0; \)
б) \(x^4 + 2x^2 - 24x + 72 = 0. \)

8.23. Розв'язати рівняння:
а) \(x^4 - 3x^2 + 4 = 0; \)
б) \(x^4 - 30x^2 + 289 = 0. \)

8.24. Знайти формулу для розв'язання біквадратного рівняння \(x^4 + px^2 + q = 0\) з дійсними коефіцієнтами, яка є зручною для випадку, коли \(\frac{p^2}{4} - q < 0. \)
Геометрична інтерпретація комплексних чисел. Комплексні числа у тригонометричній формі

8.25. Побудуваємо точки на площині, які зображають комплексні числа:

\[1, -1, -\sqrt{2}, i, -i, i\sqrt{2}, -1 + i, 2 - 3i. \]

8.26. Запишемо у тригонометричній формі такі числа:

a) 1; b) -1; c) i; d) -i; e) 2i; f) -3;

\[1 + i; \quad 1 - i; \quad 1 - i; \quad \sqrt{3} + i; \quad -\sqrt{3} + i; \quad \sqrt{3} - i; \quad 1 + i\sqrt{3}; \quad 1 - i\sqrt{3}; \quad 1 - i\sqrt{3}; \quad \sqrt{3} - i; \]

8.27. Знайдіть геометричне місце точок, які зображають комплексні числа:

a) модуль якого дорівнює 1; b) аргумент якого \(\frac{\pi}{2} \).

8.28. Знайдіть геометричне місце точок, які зображають комплексні числа, що задовольняють нерівностям:

a) \(|z| < 2; \) b) \(|z - i| \leq 1; \) c) \(|z - 1 - i| < 1; \) d) \(2 < |z| < 3; \)

\[1 \leq |z - 2i| < 2; \quad |\text{Re} z| \leq 1; \quad -1 < \text{Re} iz < 0; \quad |\text{Im} z| = 1; \]

\[|\text{Re} z + 3\text{Im} z| < 1; \quad |z - 1| + |z + 1| = 3; \quad |z + 2| - |z - 2| = 3; \quad |z - 2| = \text{Re} z + 2. \]

8.29. Розв'язати рівняння:

\[|z| + z = 8 + 4i; \quad |z| - z = 8 + 12i; \]

\[|z| - z = 1 + 2i; \quad |z| + z = 2 + i. \]

8.30. Довести тотожність

\[|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2(|z_1|^2 + |z_2|^2); \]

який геометричний зміст цієї тотожності?

8.31. Довести, що будь-яке комплексне число \(z \), відмінне від \(-1\) і модуль якого дорівнює 1, може бути зображено у вигляді \(z = \frac{1 + it}{1 - it} \), де \(t \) — дійсне число.

8.32. Довести, що \(|z| \geq 0 \) для довільного комплексного числа \(z \in \mathbb{C} \), причому \(|z| = 0 \) тоді і лише тоді, коли \(z = 0 \).

8.33. Довести, що \(|z_1 \cdot z_2| = |z_1| \cdot |z_2| \) для довільних \(z_1, z_2 \in \mathbb{C} \).

8.34. Довести такі властивості модуля комплексних чисел:

a) \(|z_1 \pm z_2| \leq |z_1| + |z_2|; \)

\[|z_1 - |z_2|| \leq |z_1 - z_2|; \]

\[|z_1 + z_2| = |z_1| + |z_2| \text{ тоді і тільки тоді, коли вектори } z_1 \text{ і } z_2 \text{ мають однакові напрямки}; \]

\[|z_1 + z_2| = ||z_1| - |z_2|| \text{ тоді і тільки тоді, коли вектори } z_1 \text{ і } z_2 \text{ мають протилежні напрямки}. \]

8.35. Нехай \(z_1, z_2 \) — комплексні числа і \(u = \sqrt{z_1z_2} \). Довести, що

\[|z_1| + |z_2| = \left| \frac{z_1 + z_2}{2} - u \right| + \left| \frac{z_1 + z_2}{2} + u \right|. \]
8.36. Довести:

а) якщо \(|z| < 1 \), то \(|z^2 - z + i| < 3 \);

б) якщо \(|z| < 2 \), то \(1 \leq |z^2 - 5| \leq 9 \);

в) якщо \(|z| < \frac{1}{2} \), то \(|(1+i)z^3 + iz| < \frac{3}{2} \).

8.37. Довести, що:

а) при множенні двох комплексних чисел у тригонометричній формі їхні модули множаться, а аргументи додаються;

б) при діленні двох комплексних чисел \(z_1 \) на \(z_2 (z_2 \neq 0) \) у тригонометричному вигляді їхні модули діляться, а аргументи віднімаються.

8.38. Довести формулу Муавра

\[
(r (\cos \varphi + i \sin \varphi))^n = r^n (\cos (n \varphi) + i \sin (n \varphi))
\]

для цілих \(n \neq 0 \).

8.39. Обчислити:

а) \((1 + i)^{1000}\);

б) \((1 + i\sqrt{3})^{150}\);

в) \((\sqrt{3} + i)^{30}\);

г) \((1 + \sqrt{\frac{3}{2}} + i)^{24}\);

д) \((2 - \sqrt{3} + i)^{12}\);

е) \((-1 + i\sqrt{3})^{15} + (1 - i\sqrt{3})^{15}\).

8.40. Обчислити визначники 3-го порядку:

а) \[
\begin{vmatrix}
1 & 1 & w \\
1 & 1 & w^2 \\
w^2 & w & 1
\end{vmatrix},
\]
де \(w = \cos \frac{2}{3} \pi + i \sin \frac{2}{3} \pi; \)

б) \[
\begin{vmatrix}
1 & 1 & 1 \\
w & w^2 & w \\
w^2 & w & 1
\end{vmatrix},
\]
де \(w = \cos \frac{4}{3} \pi + i \sin \frac{4}{3} \pi; \)

в) \[
\begin{vmatrix}
1 & 1 & w \\
w^2 & 1 & w \\
w & w^2 & 1
\end{vmatrix},
\]
де \(w = -\frac{1}{2} + i\frac{\sqrt{3}}{2} \).

8.41. Довести, що для довільного цілого \(n \) виконуються співвідношення:

а) \((1 + i)^n = 2^n\left(\cos \frac{2\pi n}{4} + i \sin \frac{2\pi n}{4}\right); \)

б) \((\sqrt{3} - i)^n = 2^n\left(\cos \frac{3\pi n}{6} - i \sin \frac{3\pi n}{6}\right). \)

8.42. Спростити вираз \((1 + z)^n\), якщо \(z = \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} \).

8.43. Знайти \(z_1^n + z_2^n \), де \(z_1 = -\frac{1}{2} + i\frac{\sqrt{3}}{2} \), \(z_2 = -\frac{1}{2} - i\frac{\sqrt{3}}{2} \), \(n \) — довільне ціле число.

8.44. Обчислити \((1 + \cos \varphi + i \sin \varphi)^n\) для довільного цілого \(n \).

8.45. Довести, що якщо \(z + \frac{1}{z} = 2 \cos \varphi \), то \(z^n + \frac{1}{z^n} = 2 \cos n \varphi \) для довільного цілого \(m \).

8.46. При \(n \in \mathbb{Z} \) обчислити вирази:

а) \((\frac{1-i\sqrt{3}}{2})^n \);

б) \((\frac{1+i\tan \varphi}{1-i\tan \varphi})^n \).

8.47. Чи утворює групу:

а) множина \(\mathbb{C}^* \) — ненульових комплексних чисел — стосовно множення;

б) множина комплексних чисел з фіксованим модулем \(r \) стосовно множення;

в) множина ненульових комплексних чисел з модулем, не більшим за фіксоване число \(r \), стосовно множення;
8.48. Які з відображень групи $\varphi: \mathbb{C}^* \to \mathbb{R}^*$ є гомоморфізмами, якщо:

а) $\varphi(z) = |z|$;
б) $\varphi(z) = 2|z|$;
в) $\varphi(z) = \frac{1}{|z|}$;
г) $\varphi(z) = 1 + |z|$;
д) $\varphi(z) = |z|^2$;
е) $\varphi(z) = 2$?

8.49. Знайти порядок елемента групи:

а) $-\frac{\sqrt{3}}{2} + \frac{i}{2} \in \mathbb{C}^*$;
б) $\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} i \in \mathbb{C}^*$;

в) $\begin{pmatrix} 0 & i \\ 1 & 0 \end{pmatrix} \in \text{GL}_2(\mathbb{C})$;
г) $\begin{pmatrix} -1 & a \\ 0 & 1 \end{pmatrix} \in \text{GL}_2(\mathbb{C})$;
д) $\begin{pmatrix} \lambda_1 & * & \cdots & * \\ 0 & \lambda_2 & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} \in \text{GL}_n(\mathbb{C})$, де $\lambda_1, \ldots, \lambda_n$ — різні корені k-го степеня з 1.

8.50. Довести, що:

а) елемент $\frac{3}{5} + \frac{4}{5} i$ групи \mathbb{C}^* має нескінчений порядок;

б) число $\frac{1}{\pi} \arctg \frac{4}{3}$ ірраціональне.

8.51. Скільки елементів порядку 6 існує в групі \mathbb{C}^*?

8.52. Знайти сукупні класи:

а) адитивної групи \mathbb{C} за підгрупою $\mathbb{Z}[i]$ цілих гаусових чисел, тобто чисел $a + bi$ з цілими a, b;

б) адитивної групи \mathbb{C} за підгрупою \mathbb{R};

в) мультиплікативної групи \mathbb{C}^* за підгрупою комплексних чисел, модуль яких дорівнює 1;

г) мультиплікативної групи \mathbb{C}^* за підгрупою \mathbb{R}^*;

д) мультиплікативної групи \mathbb{C}^* за підгрупою додатних дійсних чисел.

8.53. Нехай Q — невироджена матриця із $\text{GL}_n(\mathbb{C})$ і $H = \text{SL}_n(\mathbb{C})$. Довести, що суміжний клас QH складається із усіх матриць $A \in \text{GL}_n(\mathbb{C})$, визначник яких дорівнює визначнику матриці Q.

8.54. Чи утворює кільце стосовно операцій додавання та множення комплексних чисел:

а) множина комплексних чисел вигляду $a + bi$, де $a, b \in \mathbb{Z}$;

б) множина комплексних чисел вигляду $a + bi$, де $a, b \in \mathbb{Q}$;

в) множина всіх сума вигляду $a_1z_1 + a_2z_2 + \cdots + a_nz_n$, де a_1, a_2, \ldots, a_n — раціональні числа, z_1, z_2, \ldots, z_n — комплексні корені степеня n з 1?

8.55. Чи утворює кільце множина комплексних матриць вигляду $\begin{pmatrix} z & w \\ -\overline{w} & \overline{z} \end{pmatrix} \in \text{M}_2(\mathbb{C})$ стосовно звичайних операцій додавання та множення матриць?

8.56. Довести, що множина комплексних чисел утворює поле стосовно операцій додавання та множення комплексних чисел.

8.57. Довести, що поле комплексних чисел містить підполе, ізоморфне полю дійсних чисел.

8.58. Довести, що поле комплексних чисел ізоморфне полю матриць вигляду $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$, де a, b — дійсні числа.

272
8.59. Вирізяти через \(\sin x \) і \(\cos x \) функції:
\[\text{а) } \sin 4x; \quad \text{б) } \cos 4x; \quad \text{в) } \sin 5x; \quad \text{г) } \cos 5x. \]

8.60. Вирізяти \(\tan 6\phi \) через \(\tan \varphi \).

8.61. Довести рівності:
\[\text{а) } \cos nx = \sum_{k=0}^{[\frac{n}{2}]} (-1)^k \binom{n}{2k} \cos^{n-2k} x \cdot \sin^{2k} x; \]
\[\text{б) } \sin nx = \sum_{k=0}^{[\frac{n}{2}]} (-1)^k \binom{n}{2k+1} \cos^{n-2k-1} x \cdot \sin^{2k+1} x. \]

8.62. Вирізяти через перші степені синуса і косинуса аргументів, кратних \(x \), функції:
\[\text{а) } \sin^4 x; \quad \text{б) } \cos^4 x; \quad \text{в) } \sin^5 x; \quad \text{г) } \cos^5 x. \]

8.63. Знайти суми:
\[\text{а) } 1 - \binom{n}{2} + \binom{n}{4} - \ldots; \quad \text{б) } \binom{n}{1} - \binom{n}{3} + \binom{n}{5} - \ldots. \]

8.64. Довести, що:
\[\text{а) } 1 + \binom{n}{1} + \binom{n}{8} + \ldots = \frac{1}{2} (2^{n-1} + 2^{\frac{n}{2}} \cos \frac{n\pi}{4}); \]
\[\text{б) } \binom{n}{1} + \binom{n}{9} + \ldots = \frac{1}{2} (2^{n-1} + 2^{\frac{n}{2}} \sin \frac{n\pi}{4}). \]

8.65. Знайти суму \(\frac{n}{1} - \frac{1}{3} \binom{n}{3} + \frac{1}{5} \binom{n}{5} - \frac{1}{7} \binom{n}{7} + \ldots. \)

8.66. Довести рівності:
\[\text{а) } \cos x + \cos 2x + \ldots + \cos nx = \frac{\sin \frac{n\pi}{2} \cos \frac{(n+1)x}{2}}{\sin \frac{x}{2}}, \quad (x \neq 2k\pi, k \in \mathbb{Z}); \]
\[\text{б) } \sin x + \sin 2x + \ldots + \sin nx = \frac{\sin \frac{n\pi}{2} \sin \frac{(n+1)x}{2}}{\sin \frac{x}{2}}, \quad (x \neq 2k\pi, k \in \mathbb{Z}); \]
\[\text{в) } \cos \frac{\pi}{n} + \cos \frac{3\pi}{n} + \cos \frac{5\pi}{n} + \ldots + \cos \frac{(2n-1)\pi}{n} = 0; \]
\[\text{г) } \sin \frac{\pi}{n} + \sin \frac{3\pi}{n} + \sin \frac{5\pi}{n} + \ldots + \sin \frac{(2n-1)\pi}{n} = 0. \]

8.67. Довести, що
\[\text{а) } \cos \frac{\pi}{11} + \cos \frac{3\pi}{11} + \cos \frac{5\pi}{11} + \cos \frac{7\pi}{11} + \cos \frac{9\pi}{11} = \frac{1}{2}; \]
\[\text{б) } \cos \frac{2\pi}{11} + \cos \frac{4\pi}{11} + \cos \frac{6\pi}{11} + \cos \frac{8\pi}{11} + \cos \frac{10\pi}{11} = -\frac{1}{2}; \]
\[\text{в) } \cos \frac{\pi}{13} + \cos \frac{3\pi}{13} + \cos \frac{5\pi}{13} + \cos \frac{7\pi}{13} + \cos \frac{9\pi}{13} + \cos \frac{11\pi}{13} = \frac{1}{2}. \]

8.68. Знайти суму \(\sin^2 x + \sin^2 3x + \ldots + \sin^2 (2n-1)x \).

8.69. Довести, що
\[\text{а) } \cos^2 x + \cos^2 2x + \ldots + \cos^2 nx = \frac{n}{2} + \frac{\cos(n+1)x \sin nx}{2 \sin x}; \]
\[\text{б) } \sin^2 x + \sin^2 2x + \ldots + \sin^2 nx = \frac{n}{2} - \frac{\cos(n+1)x \sin nx}{2 \sin x}. \]

8.70. Знайти суми:
\[\text{а) } \cos^3 x + \cos^3 2x + \ldots + \cos^3 nx; \]
\[\text{б) } \sin^3 x + \sin^3 2x + \ldots + \sin^3 nx. \]

8.71. Знайти суми:
\[\text{а) } \cos x + 2 \cos 2x + 3 \cos 3x + \ldots + n \cos nx; \]
\[\text{б) } \sin x + 2 \sin 2x + 3 \sin 3x + \ldots + n \sin nx. \]

8.72. Знайти \(\lim_{n \to \infty} \left(1 + \frac{z}{n} \right)^n \) при \(z = a + bi. \)
8.73. Нехай \(e^z = \lim_{{n \to \infty}} \left(1 + \frac{z}{n}\right)^n \). Довести:

а) \(e^{2 \pi i} = 1; \)
б) \(e^{\pi i} = -1; \)
в) \(e^{z+w} = e^z \cdot e^w; \)
г) \((e^z)^k = e^{zk} \) для довільного \(k \in \mathbb{Z} \).

Корені з комплексних чисел. Корені з одиниці

8.74. Довести, що якщо \(z = |z|(\cos \varphi + i \sin \varphi) \in \mathbb{C} \) і \(n \) — довільне натуральне число, то

\[\sqrt[n]{z} = \left\{ \sqrt[n]{|z|}\left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n}\right) \mid k = 0, 1, \ldots, n - 1 \right\}. \]

8.75. Довести, що якщо комплексне число \(z \) є одним з коренів степеня \(n \) з дійсного числа \(a \), то й спріжене число \(\overline{z} \) є одним з коренів степеня \(n \) з \(a \).

8.76. Довести, що якщо \(\sqrt[n]{z} = \{ z_1, z_2, \ldots, z_n \} \), то \(\sqrt[n]{\overline{z}} = \{ \overline{z}_1, \overline{z}_2, \ldots, \overline{z}_n \} \).

8.77. Довести, що об'єднання множин \(\sqrt[n]{z} \) і \(\sqrt[n]{\overline{z}} \) є множина \(2\sqrt[n]{z} \).

8.78. Чи правильна рівність \(n\sqrt[n]{z^k} = \sqrt[n]{z} \) \((k > 1)\)

8.79. Обчислити:

а) \(\sqrt[3]{1} \);
б) \(\sqrt[3]{-1} \);
в) \(\sqrt[3]{1}; \)
г) \(\sqrt[3]{i} \);
г) \(\sqrt[3]{-i} \);
д) \(\sqrt[4]{-4} \);
е) \(\sqrt[6]{64} \);
е) \(\sqrt[16]{16} \);
ж) \(\sqrt[2]{-2} \);
з) \(\sqrt[3]{1+2} \);
и) \(\sqrt[2]{-2-i} \);
и) \(\sqrt[2]{2\sqrt{2}(1-i)} \);

ї) \(\sqrt[3]{512(1-i\sqrt{3})} \);
й) \(\sqrt[8]{8\sqrt{3}i-8} \);
к) \(\sqrt[-72(1-i\sqrt{3})] \);

л) \(\sqrt[2]{-18-18i} \);
м) \(\sqrt[2]{7-2i} \frac{1+i}{\sqrt{2}+i} + \frac{4+i}{\sqrt{2}+2i} \);
к) \(\sqrt[-72(1-i\sqrt{3})] \);

н) \(\sqrt[2]{-1-5i} \frac{5+2i}{2-2i} + 2 \);
о) \(\sqrt[2]{-2+2\sqrt{3}i} \frac{2+3i}{2+i\sqrt{3}} - 5 \frac{3+5i}{2\sqrt{3}+5i} \).

8.80. Розв'язати систему рівнянь

\[
\begin{align*}
x + y + z &= a, \\
x + \varepsilon y + \varepsilon^2 z &= b, \\
x + \varepsilon^2 y + \varepsilon z &= c,
\end{align*}
\]

de \(\varepsilon \) — відмінне від 1 значення \(\sqrt[3]{1} \).

8.81. Нехай \(\epsilon_k = \cos \frac{2\pi k}{n} + i \sin \frac{2\pi k}{n} \) \((0 \leq k < n)\). Довести, що:

а) \(\sqrt[n]{1} = \{ \epsilon_0, \epsilon_1, \epsilon_2, \ldots, \epsilon_{n-1} \} \);
б) \(\epsilon_k = \epsilon_1^k \) \((0 \leq k < n)\);
в) \(\epsilon_k \epsilon_m = \begin{cases} \epsilon_{k+m}, & \text{якщо } k + m < n, \\ \epsilon_{k+m-n}, & \text{якщо } k + m \geq n \end{cases} \) \((0 \leq k < n, 0 \leq m < n)\);
г) множина \(\mathbb{C}_n \) всіх коренів \(n \)-го степеня з 1 є циклічною групою порядку \(n \) щодо операції множення комплексних чисел;
в) будь-яка циклічна підгрупа порядку \(n \) ізоморфна групі \(\mathbb{C}_n \).

8.82. Довести, що наступні твердження рівносильні:

а) \(\epsilon \) — первісний корінь з 1 степеня \(n \);
б) порядок \(\epsilon \) в групі \(\mathbb{C}_n \) дорівнює \(n \);
в) \(\epsilon \) — твірний елемент групи \(\mathbb{C}_n \).
8.83. Знайдіть корені з одиниці степеня:
 а) 2; б) 3; в) 4; г) 6; д) 8; е) 12; ж) 24.

8.84. Знайдіть первісні корені з одиниці степеня:
 а) 2; б) 3; в) 4; г) 6; д) 8; е) 12; ж) 24.

8.85. Знайдіть двома способами корені степеня 5 з одиниці і виразити в радикалах:
 а) \(\cos \frac{2\pi}{5} \); б) \(\sin \frac{2\pi}{5} \); в) \(\cos \frac{4\pi}{5} \); г) \(\sin \frac{4\pi}{5} \).

8.86. Розв'язати рівняння:
 а) \((z + 1)^m - (z - 1)^m = 0\); б) \((z + i)^m - (z - i)^m = 0\).

8.87. Обчисліть суму \(1 + \varepsilon + \varepsilon^2 + \ldots + \varepsilon^{n-1} \), де \(\varepsilon \) — первісний корінь степеня \(2n \) з 1.

8.88. Знайдіть суму всіх коренів \(n \)-го степеня з одиниці.

8.89. Знайдіть добуток всіх коренів \(n \)-го степеня з одиниці.

8.90. Знайдіть суму \(k \)-них степенів всіх коренів \(n \)-го степеня з одиниці.

8.91. Обчисліть суми
 а) \(1 + 2\varepsilon + 3\varepsilon^2 + \ldots + n\varepsilon^{n-1} \),
 б) \(1 + 4\varepsilon + 9\varepsilon^2 + \ldots + n^2\varepsilon^{n-1} \),
 де \(\varepsilon \) — корінь \(n \)-го степеня з 1.

8.92. Знайдіть суму первісних коренів \(\alpha \), \(\beta \), \(24 \)-го, \(\nu \) 30-го степеня з одиниці.

8.93. Нехай \(\varepsilon = \cos \frac{2\pi}{n} + i\sin \frac{2\pi}{n} \). Число \(\varepsilon^k = \cos \frac{2k\pi}{n} + i\sin \frac{2k\pi}{n} \) є первісним коренем \(n \)-го степеня з 1 тоді і тільки тоді, коли числа \(k \) і \(n \) взаємно прості.

8.94. Усі корені \(n \)-го степеня з комплексного числа отримуються шляхом домноження одного з них на всі корені \(n \)-го степеня з 1.

8.95. Довести, що якщо \(z \) — первісний корінь непарного степеня \(n \) з одиниці, то \(-z\) — первісний корінь степеня \(2n \).

8.96. Чи є число \(\frac{2+i}{2-i} \) коренем якогось степеня з одиниці?